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SUMMARY

Alternative splicing (AS) is a key process underlying
the expansion of proteomic diversity and the reg-
ulation of gene expression. Here, we identify an
evolutionarily conserved embryonic stem cell (ESC)-
specific AS event that changes the DNA-binding
preference of the forkhead family transcription factor
FOXP1. We show that the ESC-specific isoform of
FOXP1 stimulates the expression of transcription
factor genes required for pluripotency, including
OCT4, NANOG, NR5A2, and GDF3, while concomi-
tantly repressing genes required for ESC differentia-
tion. This isoform also promotes the maintenance of
ESC pluripotency and contributes to efficient reprog-
ramming of somatic cells into induced pluripotent
stem cells. These results reveal a pivotal role for an
AS event in the regulation of pluripotency through
the control of critical ESC-specific transcriptional
programs.
INTRODUCTION

During the past several years, great strides have been made in

our understanding of the regulatory processes responsible for

maintenance of the pluripotent state of embryonic stem cells

(ESCs) and for the reprogramming of somatic cells to induced

pluripotent stem cells (iPSCs). A core set of transcription

factors that includes Oct4, Nanog, Sox2, and Tcf3 functions

in ESC maintenance, with the first three of these factors

cross-regulating each other’s expression, as well as genes

that stabilize the ESC state (Chen et al., 2008; Kim et al.,
132 Cell 147, 132–146, September 30, 2011 ª2011 Elsevier Inc.
2008; Silva et al., 2009). Indeed, exogenous Oct4 and Sox2,

together with Klf4 and c-Myc, reprogram somatic cells to

iPSCs (Takahashi and Yamanaka, 2006) by remodeling the

transcriptome through successive stages (Samavarchi-Tehrani

et al., 2010) that culminate in activation of the core pluripotency

transcriptional regulatory network.

In contrast to our understanding of transcriptional networks

regulating pluripotency, the role of alternative splicing (AS)

in this process is not well understood. Recent studies have

identified AS differences between ESC and differentiated cell

populations (Atlasi et al., 2008; Kunarso et al., 2008; Pritsker

et al., 2005; Rao et al., 2010b; Salomonis et al., 2010; Wu

et al., 2010; Yeo et al., 2007), and two such events have been

implicated in changing the activities of Tcf3 and Sall4, transcrip-

tion factors that function in pluripotency (Rao et al., 2010b;

Salomonis et al., 2010). Therefore, specific AS events may

modulate transcriptional networks involved in pluripotency

maintenance versus cell-type specification.

Forkhead box (FOX) transcription factors regulate a large

number of genes involved in cell proliferation, differentiation, and

development (Wijchers et al., 2006). The forkhead box forms

a winged helix domain of 80 to 100 amino acids that binds to

DNA (Li et al., 2004). FOXP1 is one of four FOXP subfamily

members that contain a C-terminal forkhead domain together

with N-terminal zinc finger and leucine zipper domains. FOXP1 is

widelyexpressed, and its lossor fusionwithother proteins through

chromosomal translocations is associated with several cancers

(Koon et al., 2007). Knockout of murine Foxp1 disrupts the estab-

lishment of specific cell types (Dasen et al., 2008; Zhang et al.,

2010) and results in early embryonic lethality (Wang et al., 2004).

Several splice variants of FOXP1 have been identified (Brown

et al., 2008), yet the functions of these are not well understood.

In this study, we identify a highly conserved AS event in FOXP1

transcripts that is activated in ESCs and silenced during cell
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differentiation. This AS event modifies critical amino acid resi-

dues within the forkhead domain and alters its DNA-binding

specificity. In ESCs this switches the transcriptional output of

FOXP1 such that the pluripotency genes OCT4, NANOG,

GDF3, and NR5A2 are stimulated, while genes involved in cell-

lineage specification and differentiation are repressed. Induced

expression of the ESC-specific isoform of FOXP1 promotes

self-renewal and the maintenance of pluripotency, whereas

its silencing inhibits iPSC programming. An evolutionarily

conserved AS event thus reconfigures transcriptional regulatory

networks required for transitions between ESC pluripotency

maintenance and differentiation.

RESULTS

An Embryonic Stem Cell-Specific Splice Variant
from the FOXP1 Gene
To identify AS events that might control stem cell pluripotency,

we used microarray profiling to compare patterns of AS in undif-

ferentiated and differentiated H9 human (h)ESCs (Extended

Experimental Procedures and Figure S1 available online).

Whereas few AS changes were detected at day 2, �165

(2.85%) of the profiled exons were predicted to undergo inclu-

sion level changes (Table S1 and data not shown) at day 10

following neural lineage induction. Genes containing these pre-

dicted AS changes were represented by diverse functional

Gene Ontology (GO) categories. In this study, we focus on

a previously unidentified AS change detected in transcripts

from the FOXP1 gene.

Our analysis indicated that FOXP1 exon 18 had increased

inclusion in day 10 neural progenitor-enriched cells compared

to undifferentiated H9 hESCs (�96% versus 79% inclusion;

Table S1). Reverse-transcription-polymerase chain reaction

(RT-PCR) assays confirmed this but also detected two unex-

pected additional bands that are �50 nt and �170 nt longer

than the transcripts containing exon 18 (Figure 1A). Sequencing

of the +50 nt band revealed the inclusion in hESCs of a previously

uncharacterized exon, which we refer to as exon 18b, in FOXP1

transcripts in place of exon 18, whereas the +170 nt band

(asterisk in Figure 1) contained exons 18 and 18b. Consistent

with low or undetectable (see below) expression of this isoform,

inclusion of both exons introduces a termination codon 121 nt

downstream of exon 18b that likely elicits nonsense-mediated

mRNA decay. However, inclusion of exon 18b instead of exon

18 preserves the open reading frame but modifies the forkhead

domain (see below, Figure S2A).

Exon 18b is efficiently included in undifferentiated H9 hESCs

(>64%, Figure 1B, lanes 1 and 2) and in H9 cells 2 days after

differentiation induction (>58%, Figure 1B, lanes 3 to 5), relative

to the neural lineage-enriched cell population at day 10 (11%,

Figure 1B, lane 6). Consistent with this observation, a high

proportion of H9 hESCs still expressed pluripotency markers at

day 2 compared to day 10 post-induction of differentiation (Fig-

ure S1D). Next, we used RT-PCR to investigate exon 18 and 18b

inclusion levels in another hESC line, CA1 (Figure 1B, lane7), and

in a panel of partially or fully differentiated human cell lines (Fig-

ure 1B lanes 8–15; refer to legend). Similar to H9 hESCs, exon

18b was highly included in CA1 (62%), whereas exon 18 was
the only exon detected in differentiated cell lines. Immunoblot-

ting confirmed that FOXP1 protein containing exon 18b is more

highly expressed in hESCs and is not expressed in differentiated

cells (see below and Figure S4A). These results show that FOXP1

exon 18b switches from efficient inclusion in hESCs to almost

complete skipping in differentiated cells.

To further confirm that exon 18b is specifically included in

self-renewing, pluripotent ESCs, we assessed exon 18b and

18 inclusion levels in H9 cells sorted for expression of the pluri-

potency markers TRA1-81 and SSEA-3 (Figure 1C). Partially

differentiated H9 hESCs were used, such that reduced exon

18b inclusion was present (compare Figure 1C, lane 1 with

lanes 1 and 2 in Figure 1B). However, in sorted cells expressing

TRA1-81 and SSEA-3, exon 18b inclusion was high (Figure 1C,

lane 3), whereas only minor levels of exon 18b inclusion were

detected in the TRA1-81/SSEA-3-negative population (Fig-

ure 1C, lane 2). Thus, inclusion of FOXP1 exon 18b is specific

to self-renewing, pluripotent hESCs. Hereafter we refer to the

exon 18b splice variant as ‘‘FOXP1-ES’’ and the exon 18 variant

as ‘‘FOXP1.’’

Evolutionary Conservation of FOXP1-ES Regulation
Comparison across species reveals that human FOXP1 exons 18

and 18b are located within an �1000 nt genomic region that is

highly conserved (PhastCons mean 0.959, variance 0.029) in

46 vertebrates (Figure 1D). This region includes �120 nt

upstream of exon 18, 373 nt between exons 18 and 18b, and

�205 nt downstream of exon 18b. This observation suggests

that exons 18 and 18b likely have conserved patterns of AS in

diverse vertebrate species. To test this, we analyzed the regula-

tion of the orthologous exons (exons 16 and 16b) inmouse Foxp1

transcripts (Figure 1D and Figure S2B).

The AS levels of exons 16 and 16b were analyzed in three

undifferentiated mouse (m)ESCs lines, CGR8, Hb9, and R1,

and following induction into different lineages (Figure 1E and Fig-

ure S2C). Similar to human cells, exon 16b displayed the highest

inclusion in undifferentiated mESCs (Figure 1E, lanes 1 and 7;

Figure S2C, lane 1), and its inclusion level progressively

decreased when CGR8- or R1-derived embryoid bodies (EBs)

were induced to form cardiomyocytes over a 14 day period (Fig-

ure 1E, lanes 3 to 6; Figure S2C, lanes 2 to 4). Furthermore, exon

16b inclusion decreased in day 14 CGR8- or R1-derived neural

and glial progenitor-enriched neurospheres (Figure 1E, lane 2;

Figure S2C, lane 5), or when Hb9 mESCs were induced to

form motor neuron (MN) precursors (Figure 1E, lane 8), and

was almost entirely skipped in sorted, differentiated MNs and

in the neuroblastoma cell line Neuro2A (Figure 1E, lanes 9

and 10). Similar to human exon 18, mouse exon 16 displayed

inclusion in all of the samples but at reduced levels relative to

exon 16b in undifferentiated mESCs. Consistent with the high

sequence conservation associated with exons 18b/16b and

18/16 and the surrounding intronic regions, these exons thus

display conserved patterns of regulation.

FOXP1 and FOXP1-ES Have Distinct DNA-Binding
Specificities
The forkhead domain of human FOXP1 overlaps exons 16 to 19.

FOXP forkhead domains are highly homologous and bind
Cell 147, 132–146, September 30, 2011 ª2011 Elsevier Inc. 133
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Figure 1. Identification of an Embryonic Stem Cell-Specific Splice Variant from the Human and Mouse FOXP1/Foxp1 Genes

(A) Schematic representation of exons 16 to 21 of the human FOXP1 gene. Transcripts including alternative exon 18 (blue; ‘‘FOXP1’’; NM_032682) encode the

widely expressed, canonical form of FOXP1, and transcripts including alternative exon 18b (red; ‘‘FOXP1-ES’’) are specifically detected in hESCs. Transcripts

simultaneously including exons 18 and 18b (indicated by an asterisk) are predicted to be targeted by nonsense-mediated mRNA decay and are detected at low

levels in hESCs. See also Figure S2A.

(B) RT-PCR assays using primers annealing to FOXP1 exons 17 and 19 (arrows) were used to analyze FOXP1 splice isoform levels in H9 hESCs grown in the

presence of MEF feeder cells (lane 1) or matrigel (lane 2), H9 hESCs induced to differentiate for 2 days toward primitive endoderm (lane 3), primitive mesoderm

(lane 4), neural lineages (lane 5), or neural progenitor cells (NPCs) at day 10 (lane 6) post-induction (see also Figure S1). FOXP1 splice isoforms were also analyzed

in a second hESC line (CA1, lane 7) and in eight human immortalized cell lines of diverse origin as indicated in lanes 8–15. HeLa, cervical carcinoma; IMR32,

neuroblastoma; H538, lung carcinoma; A549, lung adenocarcinoma; Colo 205, colorectal carcinoma; Raji, B lymphoblastoma; Jurkat, T lymphoblastoma; 293T,

‘‘embryonic kidney.’’ *, isoform containing both exons 18 and 18b. ACTB mRNA levels are shown for comparison.

(C) RT-PCR analysis (as performed in panel B) of FOXP1 splice isoform levels in unsorted H9 hESCs (lane 1) and, following fluorescence-activated cell

sorting (FACS), in H9 hESCs that are either double negative (lane 2) or double positive (lane 3) for the cell surface-expressed pluripotency markers TRA1-81 and

SSEA-3. *, isoform containing both exons 18 and 18b. ACTB mRNA levels are shown for comparison.

(D) Conservation analysis of sequences surrounding FOXP1 human exons 18 and 18b (orthologous to exons 16 and 16b in mouse Foxp1) across 46 vertebrate

species. The conservation plot was generated from the UCSC browser using the hg19 genome assembly. See also Figure S2B.

134 Cell 147, 132–146, September 30, 2011 ª2011 Elsevier Inc.



a canonical consensus motif GTAAACA as monomers and

homo- and/or heterodimers (Koh et al., 2009; Li et al., 2004),

and a FOXP2-DNA (Stroud et al., 2006) costructure reveals

that residues directly contacting DNA are conserved in FOXP1

(highlighted in green in Figure 2A). Exon 18b is predicted to

substitute 35 residues (highlighted in red in Figure 2A), none of

which are predicted to alter secondary structure or dimerization

(black dots show residues involved in dimerization in Figure 2A).

However, of four residues that contact DNA in FOXP2, two

(Asn510 and His514) are substituted in FOXP1-ES. These resi-

dues form critical hydrogen bonds with the adenine-thymine

(A-T) base pair at the fourth position in the canonical FOXP site

(underlined in GTAAACA), and their substitution may therefore

affect binding affinity and/or specificity. We therefore investi-

gated the DNA-binding properties of FOXP1 and FOXP1-ES

using protein-binding microarrays (PBMs; Berger et al., 2006,

2008).

The PBM analysis revealed that FOXP1 and FOXP1-ES

forkhead domains fused to glutathione S transferase (GST) pref-

erentially recognize distinct DNA-binding motifs (Figure 2B and

Figure S3A). The canonical binding motif GTAAACAA was repre-

sented by the majority of the highest-scoring GST-FOXP1-

bound sequences (blue dots), whereas GST-FOXP1-ES prefer-

entially bound CGATACAA or closely related sequences (red

dots). Other sequences preferentially bound by FOXP1-ES

contained specific C/A-rich motifs (orange dots), whereas other

C/A-rich motifs were bound by both proteins (green dots) (Fig-

ure 2B and Figure S3A).We confirmed these binding preferences

by gel mobility shift assays (Figure 2C and Figure S3B). For

example, GST-FOXP1-ES, when compared to GST-FOXP1,

preferentially bound dsDNA probes containing AATAAACA and

CGATACAA (orange and red dots in Figure 2B, respectively),

whereas GST-FOXP1 preferentially bound the consensus

GTAAACAA. Furthermore, GST-FOXP1 and GST-FOXP1-ES

did not bind mutant versions of each of the analyzed PBM-

derived binding sites (Figure 2C and Figure S3B; mutant posi-

tions underlined).

These results show that hESC-specific inclusion of exon 18b

changes the DNA-binding specificity of FOXP1. Moreover,

consistent with the prediction that substitution of Asn510 and

His514 in FOXP1-ES would affect recognition of the fourth A-T

base pair in the consensus site, FOXP1-ES bound a T-A base

pair at this position in a subset of the preferentially bound PBM

sequences. Additional substitutions of conserved residues at

the DNA-binding interface of FOXP1-ES presumably account

for other changes in the DNA-binding properties of this splice

isoform, including its preferential binding to specific C/A-rich

motifs. Additionally, the results from the PBM experiments and

gel mobility shift assays reveal that GST-FOXP1-ES binds

a broader spectrum of sequences than does GST-FOXP1,

although with apparent reduced affinity, as at similar concentra-

tion ranges GST-FOXP1-ES bound less efficiently to its high-
(E) RT-PCR analysis of Foxp1 splice isoforms in self-renewing CGR8 and Hb9 mo

and glial progenitors (lane 2), in CGR8mESCs aggregated to form embryoid bodie

2–10, lanes 3–5), and in beating cardiomyocytes (EB day 14, lane 6). Hb9 mESCs

MNs, which were FACS sorted (lane 9). Analysis of Neuro2a cells is shown in lane 1

for comparison. See also Figure S2C.
scoring PBM sequences than did GST-FOXP1 (Figure 2 and Fig-

ure S3A). Collectively, these findings suggests that FOXP1-ES

and FOXP1 direct different gene expression programs in ESCs.

FOXP1 and FOXP1-ES Regulate Distinct Programs of
Gene Expression in hESCs
To investigate whether FOXP1 and FOXP1-ES control different

sets of genes, we performed knockdowns using custom siRNA

pools targeting either exon 18 or exon 18b in undifferentiated

H9 cells, followed by RNA-Seq profiling. Relative to a control

siRNA pool (Figure 3A, lane 1), each siRNA pool resulted in

efficient (>80%) knockdown of only the expected FOXP1 isoform

(RT-PCR in Figure 3A, lanes 2 and 3, and immunoblotting in Fig-

ure S4A, lanes 4 and 5). RNA-Seq reads from each sample were

then mapped to RefSeq cDNAs to establish counts of unique-

mapping reads per kb per million mapped reads (RPKM; Morta-

zavi et al., 2008), and genes with at least 2-fold differences were

further analyzed. Knockdown of FOXP1 caused changes in

expression of 153 genes, whereas FOXP1-ES knockdown was

more dramatic, resulting in altered expression of 472 genes, 76

of which overlapped with the FOXP1-dependent gene set (Fig-

ure 3B; Table S2 for a full analysis). Analysis by qRT-PCR of

a representative set of 19 genes with predicted changes ranging

from 2- to 20-fold agreed well with the RNA-Seq-derived esti-

mates (r = 0.941; Figure S4B; see below). Of the affected genes,

a significantly higher proportion showed increased expression

upon FOXP1-ES knockdown versus FOXP1 (86% versus

58.2%; p = 1.63E-05, Chi-square test). Moreover, of the 76

genes affected in both knockdowns (Figure 3B), 61 (80.3%) dis-

played increased expression. These results suggest that in

undifferentiated hESCs, FOXP1 and FOXP1-ES control distinct

but overlapping sets of genes, with a substantially larger set of

genes controlled by FOXP1-ES compared to FOXP1 in hESCs.

Moreover, FOXP1-ES predominantly acts to suppress gene

expression.

A GO enrichment analysis of genes decreased upon knock-

down of FOXP1 or FOXP1-ES revealed significant enrichment

of terms related to early development (p < 1.21E-05, Figure 3C;

Table S3 for a full analysis). Interestingly, a subset of the

FOXP1-ES-dependent genes are involved in ESC pluripotency

maintenance (see below and Figure 3D). Genes upregulated

upon knockdown of FOXP1 were not significantly enriched in

any GO category, whereas genes upregulated upon knockdown

of FOXP1-ES were highly significantly enriched in GO annota-

tions associated with development, transmembrane receptor

activity, and cell differentiation (p < 2.24E-06, Figure 3C;

Table S3).

qRT-PCR validation confirmed that knockdown of FOXP1-ES

results in an�2-fold or greater decrease in the expression of the

pluripotency genes OCT4, NANOG, NR5A2, GDF3, and TDGF1

and an �2-fold or greater increase in expression of differentia-

tion-associated genes including GAS1, HESX1, SFRP4, and
use (m)ESC lines (lanes 1 and 7), in CGR8 mESCs differentiated toward neural

s (EB) grown in conditions favoring differentiation into cardiomyocytes (EB days

were differentiated into motor neuron (MN) progenitors (lane 8) and into mature

0. *, isoform containing both exons 16 and 16b. GapdhmRNA levels are shown

Cell 147, 132–146, September 30, 2011 ª2011 Elsevier Inc. 135
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WNT1 (Figure 3D). Several other genes that function in pluripo-

tency maintenance and reprogramming, including KLF4, KLF5,

SOX2, C-MYC, ZSCAN10, ESRRB, REXO1, and TBX3, dis-

played negligible or less pronounced changes in mRNA expres-

sion upon FOXP1-ES knockdown (Figure S4C and data not

shown), indicating that the decreases in OCT4, NANOG,

NR5A2, GDF3, and TDGF1 expression are a specific conse-

quence of reduced FOXP1-ES rather than an indirect effect

arising from induction of differentiation. Further, consistent

with the RNA-Seq analysis, knockdown of FOXP1 resulted in

negligible (<1.5-fold) changes in the expression levels of these

and many other FOXP1-ES-regulated genes (Figure 3D and

Figure S4C).

These results thus provide evidence that expression of

FOXP1-ES in hESCs suppresses a large number of genes with

important functions in cell differentiation and development, while

promoting the expression of a specific subset of genes that

support pluripotency.

Direct Binding of FOXP1-ES and FOXP1 to Regulated
Target Genes
We next performed chromatin immunoprecipitation followed by

high-throughput sequencing (ChIP-Seq) to identify genes that

are potentially directly regulated by FOXP1-ES and FOXP1 in

H9 ESCs. Using an antibody that efficiently immunoprecipitates

both isoforms, >3,400 significant ChIP-Seq peaks were

detected across the human genome (Tables S4A and S4B). To

assess whether these peaks are sites of FOXP1 and FOXP1-

ES occupancy, we determined whether they are significantly

enriched in individual PBM-derived 8-mers (Figure 2) that bind

to either or both isoforms.

Scatterplots directly comparing the relative under-peak

enrichment and PBM scores for individual 8-mers are shown in

Figure 4A (see Tables S5A and S5B for a full analysis). PBM

8-mers that bind preferentially to FOXP1-ES (orange dots) or

FOXP1 (blue dots), and other 8-mers that bind to both proteins

(green dots), are significantly enriched under the ChIP-Seq

peaks. In contrast, the CGATACA consensus and closely related

sequences preferentially bound by FOXP1-ES in vitro do not

appear to be widely utilized by this factor in vivo (Figure 4A).

Previous studies have revealed examples of transcription factors

that preferentially bind lower-affinity sites in vivo (Jaeger et al.,
predicted to contact DNA (based on the cocrystal structure of FOXP2 bound to its

most highly conserved across Forkhead protein family members are indicated by

are involved in dimerization.

(B) Protein-binding microarray (PBM) analysis of the DNA-binding preferences o

binding preferences measured as anti-GST fluorescence signal intensity are repre

scores for GST-FOXP1 andGST-FOXP1-ES, after averaging data from two indepe

the two repeat experiments were clustered to derive consensus binding sites. B

which is preferentially bound by GST-FOXP1; red dots represent all probe sequen

which are preferentially bound by GST-FOXP1-ES; orange and green dots represe

respectively; gray dots indicate all other probe sequences with E scores < 0.45.

(C) Electrophoretic mobility shift assay (EMSA) validating PBM-derived consensu

containing two copies of GTAAACAA (top left panel), AATAAACA (top middle pa

sequences (bottom panels) were incubated in the absence (lanes 1, 10, and 19

GST-FOXP1 or GST-FOXP1-ES proteins, as indicated. Positions mutated in the pr

complexes are indicated by arrows, and free dsDNA probe is indicated by an a

binding sites for FOXP1 and FOXP1-ES are shown in Figure S3B.
2010; Rowan et al., 2010), and this property may be important

to facilitate dynamic changes in transcriptional output mediated

by FOXP1-ES and FOXP1 upon induction of ESC differentiation.

Together with the analysis of genes differentially expressed

upon knockdown of FOXP1 and FOXP1-ES (Table S2), the

ChIP-Seq analysis provides a list of 116 candidate direct in vivo

targets of these proteins (Table S5C for a full list). GO enrichment

analysis showed that these target genes are significantly

enriched in terms associated with early development (p < 7.4E-

11) and cell differentiation (p < 1.7E-06) (Table S5D). Examples

of such direct target candidate genes are shown in Figure 4B.

Importantly, the data support OCT4 and NANOG as possible

direct targets of FOXP1-ES, as the promoters of these genes

are proximal to peaks containing 8-mers that preferentially

bind FOXP1-ES in vitro.

Further supporting a possible direct role for FOXP1-ES in

regulating OCT4, we observed a statistically significant overlap

between the RNA-Seq-profiled genes that are dependent on

FOXP1-ES for expression in H9 hESCs (Figure 3D) and a set of

genes previously reported (Kunarso et al., 2010) to be both

directly bound and regulated by OCT4 in H1 hESCs (Figure 4C;

p = 0.0016, Chi-square test). The majority (26/33) of these

overlapping genes show changes in the same direction upon

knockdown of either factor (data not shown). In contrast, genes

stimulated or repressed by FOXP1 in H9 hESCs did not signifi-

cantly overlap with the previously reported OCT4 target genes

(Figure 4C). Collectively, the results suggest that FOXP1-ES

may regulate ESC self-renewal and pluripotency maintenance

by directly controlling the expression of a subset of key pluripo-

tency genes.

Foxp1-ES Expression Promotes mESC Self-Renewal
and Pluripotency
Mouse Foxp1-ES, like human FOXP1-ES, is specifically ex-

pressed in mESCs and stimulates the expression of Oct4 and

Nanog (Figure 1 and data not shown). Therefore, we hypothe-

sized that Foxp1-ES is required for mESC self-renewal and

pluripotency. To test this, we first asked whether ectopic

Foxp1-ES expression suppresses mESC differentiation. CGR8

mESC lines stably expressing 33Flag-Foxp1-ES or 33Flag-

Foxp1 isoforms at levels comparable to endogenous protein

and under Doxycycline (Dox)-inducible control (Figure S5A)
recognition site; Stroud et al., 2006) are indicated in green, residues that are the

black arrowheads above the alignment, and residues indicated with a black dot

f GST-FOXP1 and GST-FOXP1-ES forkead domain fusion proteins. Relative

sented as ‘‘E scores’’ (Berger et al., 2006). The scatterplot directly compares E

ndent experiments. Sequences of probes with E scores > 0.45 in at least one of

lue dots represent all probe sequences containing the consensus GTAAACA,

ces containing the consensus sequences CGATACA, CAATACA or TGATACA,

nt C/A-rich motifs preferentially bound by GST-FOXP1-ES or by both isoforms,

A full version of the scatterplot is shown in Figure S3A.

s DNA-binding sites for FOXP1 and FOXP1-ES. Radiolabeled dsDNA probes

nel), or CGATACAA (top right panel) or two copies of mutant versions of these

) or in the presence of increasing amounts (0.2 to 3.2 pmol) of recombinant

obe sequences are highlighted in black and underlined. Shifted protein-dsDNA

sterisk. Additional EMSA experiments assaying other PBM-derived preferred
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Figure 3. Knockdown of FOXP1 and FOXP1-ES Affects the Expression of Distinct Sets of Genes in hESCs

(A) RT-PCR analysis of FOXP1 and FOXP1-ES splice isoforms in H9 hESCs transfected with a control, nontargeting siRNA pool (lane 1), an siRNA pool targeting

exon 18b (lane 2), and an siRNA pool targeting exon 18 (lane 3). ACTB mRNA levels are shown as a loading/recovery control. The corresponding western blot

analysis is shown in Figure S4A.

(B) Top: Venn diagram showing numbers of genes with estimated 2-fold to 10.8-fold transcript level changes between the FOXP1 (blue circle) or FOXP1-ES (red

circle) knockdowns and the control knockdown samples shown in (A). Bottom: Bar graph showing proportions of genes with up- (black fill) or downregulation

(white fill) in the gene sets affected by siRNA knockdown of exon 18- or exon 18b-containing transcripts. Genes with transcript changes affected in both

knockdowns are also indicated (bar with gray outline).
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were aggregated to form EBs under conditions that favor neural

cell differentiation. In the absence of Dox, all three cell lines

supported neural differentiation, as revealed by the appearance

of cells with neuronal morphology that immunostained with an

antibody to the neuronal marker b-III tubulin (Figures 5Aa,

5Ac, and 5Ae). b-III tubulin-positive neurons were also ob-

served in the control line and in 33Flag-Foxp1-expressing

cells after Dox stimulation (Figures 5Ab and 5Ad, respectively).

In marked contrast, overexpression of 33Flag-Foxp1-ES

almost completely abolished neural cell differentiation (Fig-

ure 5Af), and only the 33Flag-Foxp1-ES cells showed promi-

nent Oct4 immunostaining (compare Figure 5Al with Figures

5Ag–5Ak). Furthermore, knockdown of Foxp1 did not signifi-

cantly impact proliferation, whereas knockdown of Foxp1-ES

reduced formation of CGR8 mESC colonies by �3-fold (Figures

S5B–S5D). Altogether, these results provide evidence that

Foxp1 promotes mESC differentiation, whereas expression of

Foxp1-ES prevents differentiation and is required for mESC

self-renewal.

To further establish whether Foxp1-ES expression is required

for the maintenance of stem cell identity, the 33Flag-Foxp1- or

33Flag-Foxp1-ES-expressing CGR8 cell lines were cultured in

the presence of different amounts of leukemia inhibitory factor

(LIF), a cytokine that is required for pluripotency maintenance

of mESCs. Both cell lines were cultured with excess LIF, which

supports mESC self-renewal (Figure 5B, LIF 1:1, continuous

lines), or with 10% of this amount, which is insufficient to prevent

cell differentiation (Figure 5B, LIF 1:10, dashed lines). In the

absence of Dox, reduced LIF led to a decrease (�50% of total)

in the number of Oct4-positive cells after four cell passages (Fig-

ure 5B, right panels) and reduced cell division rates (Figure 5B,

white dashed lines in left panels). However, Dox-induced over-

expression of either Foxp1 isoform in the presence of standard

LIF concentrations resulted in increased rates of cell division

(Figure 5B, solid black lines), and the majority (>80%) of cells re-

mained Oct4 positive. In contrast, in reduced LIF, 33Flag-Foxp1

expression did not prevent cell differentiation, with cell division

declining after two passages, and only�40%of the cells remain-

ing Oct4 positive after four passages (Figure 5B, blue panel,

black dashed lines). Under the same reduced LIF conditions,

overexpression of 33Flag-Foxp1-ES prevented loss of pluripo-

tency characteristics, as more than 90% of the cells remained

Oct4 positive after four passages and cell division rates were

comparable to controls grown in standard amounts of LIF (Fig-

ure 5B, red panel, black dashed lines).

To further assess whether Foxp1-ES but not Foxp1 promotes

pluripotency, we cultured the 33Flag-Foxp1- and 33Flag-

Foxp1-ES-expressing cell lines in the absence of exogenous

LIF, with or without Dox. As expected, the two cell lines rapidly

differentiated in the absence of Dox, and the 33Flag-Foxp1
(C) Gene Ontology (GO) annotations enrichment analysis performed on sets o

knockdown of exon 18- and exon 18b-containing splice isoforms. The top four m

values, corrected using the Benjamini false-discovery rate. The full analysis is sh

(D) qRT-PCR assays validating RNA-Seq predictions (see Table S2) of �2-fold o

(OCT4, TDGF1, NR5A2, NANOG, GDF3, and FGF4) and differentiation-associa

knockdown of FOXP1-ES and FOXP1 in H9 hESCs. Measurements are relative to

independent analyses; standard deviations (SDs) are indicated. See also Figures
line could not be maintained in culture beyond five or six

passages even in the presence of Dox (data not shown). Strik-

ingly, the 33Flag-Foxp1-ES-expressing cells continued to

grow for over 30 passages in the absence of LIF. We refer to

these cells as 33Flag-Foxp1-ESDLIF. qRT-PCR analysis

confirmed that these cells express Oct4, Nanog, and Nr5a2 at

levels comparable to the parental CGR8 cells, but they display

reduced levels of Sox2, Klf4, and LifR (Figure 5C). The 33Flag-

Foxp1-ESDLIF cells were then aggregated to form EBs and

cultured under conditions that favor neural differentiation. As

before, in absence of Dox, the cells adopted neuronal

morphology, expressed b-III tubulin, and displayed negligible

Oct4 expression (Figure S5E, left panel). Finally, when injected

subcutaneously in mice, the 33Flag-Foxp1-ESDLIF CGR8

mESCs formed teratomas that reproduce all three germ cell

types in vivo (Figure 5D and Figure S5F). Collectively, these

results support the conclusion that increased expression of

Foxp1-ES, but not of Foxp1, promotes the maintenance of

CGR8 mESCs in a pluripotent state.

Foxp1-ES Is Required for Efficient iPSC Formation
We next asked whether Foxp1-ES expression is important for

the formation of iPSCs from mouse embryonic fibroblasts

(MEFs). For this experiment, secondary mouse MEFs (2�–6C
MEFs) were employed that contained integrated piggyBac

transposons expressing, under Dox-inducible control, the four

Yamanaka transcription factors ‘‘OKMS’’ (Oct4, Klf4, c-Myc,

and Sox2) required for iPSC reprogramming (Takahashi and

Yamanaka, 2006; Woltjen et al., 2009). In the presence of Dox,

the 2�–6C MEFs efficiently form secondary iPSCs (2�–6C iPSCs)

that are pluripotent (Woltjen et al., 2009). Consistent with a key

role for Foxp1-ES in the maintenance of mESC pluripotency,

RT-PCR assays showed that Foxp1 exon 16b is almost

completely skipped in primary MEFs but is included to �32%

in iPSCs, which is comparable with its inclusion level in mESCs

(Figure 6A and Figure S6A, lanes 1 and 2). During 2�–6C MEF re-

programming, Foxp1 exon 16 is predominantly included at early

stages but displays progressively decreased inclusion toward

the end of reprogramming (compare days 2–21 in Figures 6A

and 6B and Figure S6A). Conversely, exon 16b is weakly

included (<4%) at the earliest stages of reprogramming (lanes

3–5) but is efficiently included at later stages (days 5–16), reach-

ing the highest level of inclusion (�37%) in 2�–6C iPSCs (Figures

6A and 6B and Figure S6A).

We next investigated whether Foxp1 and Foxp1-ES are impor-

tant for iPSC formation. Each isoform was selectively knocked

down using siRNA pools specific for either exon 16b or exon

16 sequences, and siRNAs comprising these pools that

produced the most efficient isoform-specific knockdown (Fig-

ure S6B) were then used in pairs to validate results. Each
f genes displaying increased or decreased transcript levels following siRNA

ost enriched annotations are shown for each gene set with corresponding p

own in Table S3.

r greater changes in transcript levels from the pluripotency-associated genes

ted genes (GAS1, CITED2, WNT1, HESX1, BIK, and SFRP4) following siRNA

levels detected with a control siRNA pool and represent averages from three

S4B and S4C.
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Figure 4. Chromatin Immunoprecipitation and High-Throughput Sequencing Analysis of FOXP1/FOXP1-ES Target Genes in hESCs
(A) ChIP-Seq analysis in H9 hESCs was performed using a pan-FOXP1 isoform-specific antibody. The scatterplots compare relative enrichment scores for

PBM-derived FOXP1 and FOXP1-ES 8-mer binding sequences under ChIP-Seq peaks and PBM-derived binding strengths. Z scores were calculated by counting

motif occurrences in peak sequences relative to occurrences after randomizing the same peak sequences 100,000 times. PBM 8-mer sequences that bind

preferentially to FOXP1, FOXP1-ES, or both proteins are colored as in Figure 2B. See Table S5A for a full analysis.

(B) Representative tracks showing locations of FOXP1/FOXP1-ES ChIP-Seq peaks proximal (± 20 kb of the transcription start site) to genes that display an �2-

fold or greater change in mRNA expression upon knockdown of FOXP1 isoforms. See also Table S4 and Table S5.

(C) Bar graph representing the percentage of genes up- or downregulated in response to FOXP1 or FOXP1-ES siRNA knockdown in H9 hESCs, which

are experimentally supported (based on combined ChIP and knockdown-expression analysis; Kunarso et al., 2010) targets of OCT4. OCT4 target genes only

significantly overlap those genes showing decreased but not increased expression following knockdown of FOXP1-ES (p = 0.0016; Chi-square test).
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Figure 5. Expression of Foxp1-ES but Not Foxp1 Promotes Pluripotency Maintenance of mESCs

(A) CGR8 mESC lines expressing 33Flag-Foxp1 or 33Flag-Foxp1-ES under Doxycycline (Dox)-inducible control (see Figure S5A) and the parental line used to

generate these two cell lines (CGR8-rtTA) were aggregated to form embryoid bodies (EBs) and then cultured under conditions promoting neural differentiation.

The cultured EBswere treatedwith or without Dox and then immunostained for b-III tubulin (neural marker) or Oct4 (pluripotencymarker). Nuclei were stainedwith

Hoechst.

(B) Quantification of CGR8 mESC proliferation in response to Dox-induced expression of 33Flag-Foxp1 or 33Flag-Foxp1-ES in the presence of excess LIF (LIF

1:1), which promotes mESC self-renewal, or in the presence of concentrations of LIF that are insufficient for promoting mESC self-renewal (LIF 1:10). Left panels

show cell growth rates calculated as the cumulative difference in cell-cycle numbers relative to the control condition (LIF1:1) without Dox-induced expression of

the 33Flag-Foxp1(-ES) transgenes. Right panel: Quantification of the proportions of cells expressing Oct4 under the different growth conditions indicated after

four cell passages. Quantifications represent four independent analyses and SDs are indicated.
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isoform-specific pool resulted in a selective reduction (>65%) of

only its respective target mRNA isoform (Figure 6C). Subse-

quently, siRNAs were transfected into 2�–6C MEFs at day 0 or

day 13 during reprogramming, then harvested 5 and 3 days later,

respectively. Reprogramming colonies were either collected and

analyzed by flow cytometry to quantify cells positive for both

SSEA-1 and GFP, which marks the reprogramming population

(Figure 6D), or fixed and imaged by confocal microscopy (Fig-

ure 6E). Although not all SSEA-1-expressing cells eventually

progress to iPSCs, SSEA-1 expression during the initiation

phase of reprograming made it ideal for assessing the early

effects of knockdown of Foxp1-ES and Foxp1. This also af-

forded more reliable quantification of reprogramming initiation

compared to markers such as Nanog, which are expressed at

later stages (data not shown). As expected, in the absence of

OKMS expression, no SSEA-1/GFP-positive cells formed

compared to Dox-induced cultures, which showed robust initia-

tion of SSEA-1 expression. However, transfection of 2�–6C
MEFs with siRNAs targeting Oct4 reduced the population of

SSEA-1/GFP-positive cells by �5 fold (Figures 6D and 6E).

Importantly, knockdown of Foxp1-ES resulted in a comparable

(�4-fold) reduction in SSEA-1/GFP-positive cells, whereas

knockdown of Foxp1 had little to no effect (Figures 6D and 6E).

Knockdown of Foxp1-ES (or Oct4) at day 13 also significantly

reduced the proportion of SSEA-1/GFP-positive cells (Figure

S6C). Finally, we asked whether overexpression of either

Foxp1-ES or Foxp1, together with OKMS, differentially affects

primary MEF reprogramming. Although overexpression of

Foxp1-ES with OKMS factors did not substantially alter the effi-

ciency of formation of SSEA-1-positive colonies, overexpression

of Foxp1 completely blocked OKMS induction of AP- and SSEA-

1-positive colonies (Figure S6D; Extended Experimental Proce-

dures and data not shown).

Taken together with the results described earlier, these data

provide evidence that the AS-mediated switch controlling

Foxp1-ES expression is critical for efficient iPSC formation, as

well as for themaintenance of ESCself-renewal andpluripotency.
DISCUSSION

Previous investigations of gene regulatory networks that control

ESC self-renewal and pluripotency and iPSC reprogramming

have largely focused on the roles of transcription factors, chro-

matin remodeling, and noncoding RNAs in these processes.

An important aspect of our findings is the observation that an

AS switch controlling the expression of the FOXP1-ES splice iso-

form is integral to the control of the highly interconnected tran-

scriptional regulatory network required for ESC pluripotency

and iPSC reprogramming (Figure 7; refer to Introduction). This
(C) qRT-PCR analysis of transcript expression from genes involved in pluripotency

grown in absence of LIF (DLIF) for 24 passages. Average expression levels ofOct4

shown relative to the average expression levels of the same genes in the parental

are average measurements from three independent analyses; positive SDs are in

(D) Teratoma assay assessing the pluripotency potential of mouse CGR8 33Flag-

sections detected all three embryonic germ layer-derived tissues. Endodermal d

derivatives: muscle (c) and cartilage (d); ectodermal derivatives: neuronal (e) and

Bar = 50 mm. See also Figures S5E and S5F.
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regulatory paradigm is reminiscent of AS events with pivotal

roles in the control of transcription factors involved in Drosophila

sex determination, courtship behavior, and eye development

(Demir and Dickson, 2005; Fic et al., 2007; Förch and Valcárcel,

2003). Moreover, additional AS events have recently been re-

ported to influence the activity of transcription or signaling

factors implicated in the control of pluripotency genes (Mayshar

et al., 2008; Rao et al., 2010b; Salomonis et al., 2010; see Intro-

duction). Thus, a small number of AS events have the capacity to

dramatically impact the wiring of transcriptional networks and

other processes with critical regulatory functions in pluripotency

and early development.

Our results extend recent reports establishing critical roles for

FOXP1/Foxp1 in the specification of cell lineages in early devel-

opment. Foxp1 has been reported to coordinate the balance

between cardiomyocyte proliferation and differentiation through

lineage-specific regulation of Fgf ligands and the Hox protein

Nkx2.5 (Zhang et al., 2010) and to promote midbrain identity in

mESC-derived dopamine neurons through direct regulation of

the homeobox protein Pitx3 (Konstantoulas et al., 2010). It also

coordinates the expression of other Hox proteins required for

columnar organization of spinal motor neurons (Rousso et al.,

2008). Interestingly, FOXP1 together with several other tran-

scription factors has been reported to promote the self-renewal

and differentiation potential of mesenchymal stem cells (Kubo

et al., 2009), and it has also been implicated in the transition

between pro- and pre-B cells during B cell maturation (Hu

et al., 2006; Rao et al., 2010a). Taken together with our findings,

it is apparent that the differential regulation of FOXP1/Foxp1 and

its isoforms can have a profound impact on transitions between

cell proliferation, lineage specification, and differentiation in

multiple biological contexts.

In future studies, it will be of considerable interest to elucidate

the mechanisms responsible for the regulation of FOXP1-ES

expression. In particular, it will be important to establish which

splicing factors control the inclusion of FOXP1/Foxp1 exons

18/16 and 18b/16b, and how these factors themselves are differ-

entially regulated in ESCs and differentiated cells, so as to

govern the transcriptional networks that regulate ESC self-

renewal and pluripotency.

EXPERIMENTAL PROCEDURES

Microarray Hybridization, Data Extraction, and Analysis

Total RNA was extracted from ESCs using TRI reagent (Sigma-Aldrich) as per

the manufacturer’s recommendations. Poly(A)+ mRNA was purified using Nu-

cleotrap Midiprep kits (Clonetech). cDNA was synthesized using the WT-

Ovation RNA Amplification System (Nugen) and was hybridized to custom

AS microarrays as described previously (Pan et al., 2004). Data analysis was

performed essentially as described previously (Pan et al., 2004) (S. Mavadadi,

J. Calarco, X.W., B.J.B., Q.P., and Q. Morris, unpublished data).
maintenance in Dox-treated CGR8mESCs expressing 33Flag-Foxp1-ES and

, Nanog,Nr5a2, Sox2, Klf4, and LifR in CGR8 33Flag-Foxp1-ES DLIF cells are

CGR8 mESCs, cultured in parallel in the presence of 1:1 LIF. Expression ratios

dicated.

Foxp1-ES DLIF cells (see panel C). Hematoxylin and eosin staining of teratoma

erivatives: ciliated respiratory (a) and intestine-like epithelium (b); mesodermal

skin epithelial cell (f).
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Figure 6. Foxp1-ES Is Required for Efficient Reprogramming of MEFs to iPSCs

(A) Semiquantitative RT-PCR analysis of the endogenous expression levels of Foxp1, Foxp1-ES, Oct4, and Sox2 during the course of reprogramming of

secondary MEF-6C cells into secondary iPSC colonies (2�–6C iPSCs). Induction of Oct4, Klf4, cMyc, and Sox2 transcription factors by addition of Dox at day

0 (2�–6C MEFs) was followed by monitoring transcript levels 2, 5, 11, 16, 21, and 30 days (2�–6C iPSCs) post Dox induction. Gapdh mRNA levels are shown as

a loading/recovery control.

(B) Bar graph showing the relative levels of expression of endogenous transcripts encoding Foxp1 and Foxp1-ES during reprogramming of 2�–6C MEFs. The

levels of expression of Foxp1 and Foxp1-ES were normalized to Gapdh expression levels at each time point and represented as log2 ratios relative to the levels of

Foxp1 and Foxp1-ES detected in 2�–6C MEFs and 2�–6C iPSCs, respectively. Positive SDs are indicated.

(C) Bar graph showing the relative expression of Foxp1 and Foxp1-ES isoforms following transfection of siRNA pools. Cells were either mock-transfected or

transfected with siRNA pools specific for Foxp1 exon 16, Foxp1-ES exon 16b, or siRNA pools specific for Oct4. Expression levels were determined by
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Figure 7. Model for the Role of an AS Switch in Controlling

Transcriptional Networks Required for the Regulation of ESC

Pluripotency and Differentiation

In pluripotent ESCs or iPSCs, inclusion of FOXP1 exon 18b results in the

expression of FOXP1-ES, which preferentially binds to a distinct set of DNA

motifs. This event promotes the expression of key transcription factors

including OCT4 andNANOG required for themaintenance of pluripotency, and

it represses genes required for ESC differentiation. During differentiation, exon

18b is entirely skipped, resulting in the exclusive inclusion of exon 18 and

expression of the ‘‘canonical’’ FOXP1 isoform. This leads to a change in DNA

recognition, a consequence of which is reduced expression of pluripotency

genes and increased expression of genes required for differentiation.
RNA-Seq Data Generation and Analysis

H9hESCswere transfectedwith siRNApools (Dharmacon) usingDharmaFECT

as per the manufacturer recommendations, transfected again after 2 days,

then harvested 2 days later. Total RNA from two independent transfections

was pooled and submitted to Illumina Inc. for mRNA sequencing. RNA-Seq

analysis was performed essentially as described previously (Pan et al., 2008).

Reverse-Transcription-Polymerase Chain Reaction Assays

RT-PCR assays were performed using the OneStep kit (QIAGEN) as described

previously (Calarco et al., 2007). For qRT-PCR assays, cDNA from 2 mg total

RNA was synthesized using SuperScript III Reverse Transcriptase (Invitrogen)

as per manufacturer recommendations. Reactions were performed in a 384-

well format using 20 ng of cDNA and FastStart Universal SYBR Green Master

(Rox) (Roche Applied Science). Primer sequences are available upon request.

Protein-Binding Microarrays and Data Analysis

GST-FOXP1 and GST-FOXP1-ES were analyzed on PBMs as described previ-

ously (Badis et al., 2009), and the resulting data were processed as described

in Lam et al. (2011). 8-mers with an E score > 0.45 in at least one of the two

experimental repeats were considered significant (Berger et al., 2008) and
semiquantitative RT-PCR assays, normalized to Gapdh levels and relative to th

Positive SDs are indicated. See also Figure S6B.

(D) Bar graph showing relative proportions of flow cytometry-sorted, reprogramm

SSEA-1. 2�–6CMEFs were Dox treated to induce OKMS factors and transfected w

and immunostaining 5 days later. Results from analyzing the effects of transfectin

Range over mean values for two independent analyses are indicated.

(E) Representative images of SSEA-1- and DAPI-stained cells at day 5 followi

described in (C) and (D).

144 Cell 147, 132–146, September 30, 2011 ª2011 Elsevier Inc.
were aligned to generate consensus sequences using enoLOGOS (Workman

et al., 2005).

Gel Mobility Shift Assays

dsDNA probes contained two copies of representative PBM-derived binding

sequences separated by two cytosines, or mutated derivatives of these

sequences. Gel shift assays were performed as described in Hellman and

Fried (2007).

ChIP-Seq

ChIP-Seq experiments were performed as described previously (Schmidt

et al., 2009), using an anti-FOXP1 (Abcam) antibody and 5 3 107 H9 hESCs

per sample. Genomic DNA Sample Prep Kits (Illumina) were used to prepare

dsDNA libraries from fragmented immunoprecipitated and total DNA as per

the manufacturer’s protocol, and libraries were sequenced using a HiSeq

machine (Illumina).

Immunofluorescence Microscropy

CGR8 cells were analzyed by immunofluoresence microscopy using poly-

clonal anti-b-III tubulin (Sigma-Aldrich) and murine monoclonal anti-Oct4

(Pierce), were stained with Hoechst dye (Sigma-Aldrich), then mounted with

Aqueous mounting Medium (Permafluor). Images were acquired by

epi-fluorescence imaging as previously described (Samavarchi-Tehrani

et al., 2010).

iPSC Reprogramming Assays and Imaging

Secondary (6C) MEFs harboring OKMS transgenes under tetracycline-induc-

ible control were derived using the piggyBac system as previously described

(Woltjen et al., 2009). In brief, 2�–6C MEFs were cultured on collagen-coated

plates and expression of the transgenes was induced on day 0 of reprogram-

ming using 1.5 mg/ml Dox in standard mouse ESC media. For knockdown

experiments, single or pooled siRNAs (Dharmacon/ThermoFisher) were

transfected into the 2�–6CMEFs at day 0 or at day 13 after induction, as previ-

ously described (Samavarchi-Tehrani et al., 2010). Cells were then cultured for

another 3 or 5 days prior to analysis by flow cytometry, immunostaining, or

isolation of total RNA for qPCR analysis, also as described in Samavarchi-Teh-

rani et al. (2010).

ACCESSION NUMBERS

Preprocessed probe intensity scores for all AS and PB microarray data, and

short read sequence data, are available from the GEO database under acces-

sion number GSE30992.
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Supplemental Information includes Extended Experimental Procedures, six
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